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Abstract
When computing multicentre integrals over Slater-type orbitals (STOs) by
means of the Shavitt and Karplus Gaussian integral transforms (Shavitt and
Karplus 1962 J. Chem. Phys. 36 550), one usually ends up with a multiple
integral of the form

∫ 1
0 du

∫ 1
0 dv · · · ∫ ∞

0 dzF(u, v, . . . , z) (Shavitt and Karplus
1965 J. Chem. Phys. 43 398) in which all the integrals are inter-related. The
most widely used approach for computing such an integral is to apply a
product of Gauss–Legendre quadratures for the integrals over [0, 1] while
the semi-infinite term is evaluated by a special procedure. Although numerous
approaches have been developed to accurately perform the integration over
[0,∞) efficiently, it is the aim of this work to add a new tool that could be
of some benefit in carrying out the hard task of multicentre integrals over
STOs. The new approach relies on a special Gauss quadrature referred to as
Gauss–Bessel to accurately evaluate the semi-infinite integral of interest. In
this work, emphasis is put on accuracy rather than efficiency since its aim is
essentially to bring a proof of concept showing that Gauss–Bessel quadrature
can successfully be applied in the context of multicentre integrals over STOs.
The obtained accuracy is comparable to that obtained with other methods
available in the literature.

PACS number: 02.30.Uu

1. Introduction

Practical quantum chemistry uses approximation methods with different degrees of
sophistication in order to generate the data that are of interest to experimentalists and
theoreticians. In practice, use of approximate methods is necessary mainly because the
Schrödinger equation can only be solved exactly for very few atomic and molecular systems
with limited interest, e.g., H, H+

2 and suchlike.
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Perhaps the most widely used technique to construct approximate molecular
wavefunctions is the so-called Roothaan’s linear combination of atomic orbitals (LCAO)
[1]. As a result of using such an ansatz, the core component of most, if not all, quantum
chemistry software is a module dedicated to the computation of multicentre integrals. Based
on the results obtained from several investigations of the properties of the Schrödinger
eigenfunctions, it can be argued that exponential-type functions (ETFs) constitute the most
suitable class of functions to be used as part of the LCAO procedure. Among the legion of
possible ETFs candidates, Slater-type orbitals (STOs) are probably those which attracted most
of the attention owing to their analytical form in the coordinate space. However, although
STOs (or more generally ETFs) are theoretically the most appropriate for quantum chemistry
calculations, such functions have never been used extensively in practice because multicentre
integrals always led to inefficient numerical algorithms. Gaussian-type orbitals (GTOs) were
proposed since they allowed cost efficient procedures to be developed for multicentre integrals.
GTOs owe their success to one very important feature: their multiplication theorem [2, 3
(p 154)] allowing a product of two such orbitals centred on two arbitrary points defined by a
and b to be written as

exp(−α1‖r − a‖2) exp(−α2‖r − b‖2) = exp

(
− α1α2

α1 + α2
‖a − b‖2

)

× exp

[
−(α1 + α2)

∥∥∥∥r − α1a + α2b
α1 + α2

∥∥∥∥2
]

. (1)

To within a constant, the result is obviously a new Gaussian centred on the centre of
‘mass’ (barycentre) of the two initial centres.

Evaluation of multicentre integrals over STOs, and especially the four centre which are
the true bottleneck of any quantum chemistry package, was recognized to be a challenging
mathematical and numerical problem from the early days of quantum chemistry. Various
methods were proposed as possible routes to obtain efficient numerical procedures. These can
be clustered into two major categories:

• Addition-theorem-based methods which can be referred to as one range [4] and two
range [5].

• Integral transforms. Two of these methods have received particular attention in the
literature: the Gaussian integral transform (GIT) [6, 7] and the Fourier integral transform
(FIT) [8].

This work falls into the second category as it is based on the GIT originally introduced
and investigated by Shavitt and Karplus in several milestone papers [6, 7]. When such an
approach is used, STOs are first represented by a product of semi-infinite integrals in which
the integrand involves a product of GTOs. This fact allows the Gaussian multiplication
theorem to be applied, hence simplifying to some extent the computation. As a result, multi-
centre integrals end up being represented by a multiple integral which can be written in the
form

∫ 1
0 du

∫ 1
0 dv · · · ∫ ∞

0 dzF(u, v, . . . , z). In their original work, Shavitt and Karplus have
evaluated the innermost semi-infinite integral using suitable series expansions, i.e., one for
small values of z and an asymptotic form for large values of z. More recently, Rico et al [9] have
expanded the semi-infinite integral as an infinite series involving modified Bessel functions
of the second kind kv(z). Using this approach the authors were able to expand Slater-type
two-centre charge distributions as an infinite series of ETFs located on the line joining the two
centres. The aim of this work is to present an alternative to both approaches since it proposes
to develop a special Gauss quadrature, referred to as Gauss–Bessel, specifically tailored to
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the integrand involved in the semi-infinite integral. As an application of the new method,
three-centre nuclear attraction integrals over s STOs are evaluated.

2. Mathematical preliminaries

Among the legion of functions that may be used as the building block for the trial LCAO
wavefunction, Slater-type orbitals (STOs) [10] are probably the functions with the simplest
analytical form in the coordinate space. In the framework of the LCAO methodology, atomic
orbitals (which in the case of interest are STOs) are centred on the atoms constituting the
molecule. As a consequence, STOs involved as part of the trial wavefunction are expressed as

χm
n,l(α‖r − a‖) = Nn(α)‖r − a‖n−l−1 exp(−α‖r − a‖)Ym

l

(
r − a

‖r − a‖
)

with Nn(α) = (2α)n+1/2

√
(2n)!

(2)

in which the vector a gives the location of the centre (atom) with respect to some chosen
reference framework. Ym

l (k) stands for the solid spherical harmonic of degree n and order
m and is related to the corresponding surface harmonic. Using the Condon and Shortley
convention, solid spherical harmonics can be expressed as

Ym
l (k) = ‖k‖lY m

l (θk, φk)

= im+|m|
√

2l + 1

4π

(l − |m|)!
(l + |m|)! P

|m|
l (cos θ) eimφ (3)

where P m
l (z) represents the associated Legendre function [11 (pp 174, 232)].

Among the methods that were proposed in the early days of quantum chemistry to solve
the problem of multi-centre integrals over STOs is the so-called Gaussian integral transform
approach (GIT). Perhaps the strongest incentive behind the work of Shavitt and Karplus when
they proposed the GIT method was the unprecedented success of GTOs in leading to very
efficient algorithms for computing multi-centre integrals over GTOs. Thus, to take advantage
of such efficient algorithms, Shavitt and Karplus start by representing a 1s Slater orbital by a
semi-infinite integral in which a Gaussian-like function occurs

χ0
1,0(α‖r − a‖) = N1(α)

α

2
√

π

∫ +∞

0
s−3/2 exp

(
−α2

4s

)
exp(−s‖r − a‖2)︸ ︷︷ ︸

Gaussian-type orbital

ds. (4)

According to [7], the above formulation can be viewed as the equivalent of a series
representation in which a STO would be expressed as a sum of an infinite number of GTO-like
orbitals. The major consequence of using the above integral transform is the possibility for
multi-centre integrals over STOs to be represented by multiple integrals in which the integrand
involves GTO-like terms. The next step of course is to simply perform the integration over
electronic coordinates using Boys formulae [2] routinely used in the context of multi-centre
integrals over GTOs basis sets. In the case of multi-centre integrals over STOs, proceeding
in the way outlined above yields a multiple integral in which the innermost integral is semi-
infinite. The contribution of this work is related to this particular aspect of the computation.
In the following, three points are addressed:

1. Formulae for three-centre nuclear attraction integrals used in this work are presented.
2. Details on the derivation of the numerical algorithms, namely derivation of a new class of

orthogonal polynomials, to be used for numerical experiments are shown.
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3. Comparative numerical experiments are presented showing the potential of the current
method as compared to others.

3. Three-centre nuclear integrals

Three centre nuclear attraction integrals over STOs are by far the most difficult one-electron
integrals which need to be computed for ab initio quantum chemical calculations. As a
consequence, an efficient computational procedure would not only help the standard SCF
procedure but would also be beneficial for techniques such as density functional theory (DFT).
Indeed in the latter three-centre nuclear attraction integrals are probably among the most
difficult quantities needed for a full quantum mechanical calculation on molecular systems.
For the sake of completeness, we start with an outline of the route originated by Shavitt and
Karplus which leads to the master formula describing three-centre nuclear attraction integrals
involving 1s STOs. Three-centre integrals (using 1s STOs) are defined as

I1,0,0
1,0,0 (α1, α2, a, b, c) =

〈
χ0

1,0(α1, ‖r − a‖)
∣∣∣∣ 1

‖r − c‖
∣∣∣∣χ0

1,0(α2, ‖r − b‖)
〉
. (5)

In the above definition each of the 1s STO is replaced by its GIT as given by equation (4)
which yields

I1,0,0
1,0,0 (α1, α2, a, b, c) = N1(α1)N2(α2)

α1α2

4π

∫ +∞

x=0

∫ +∞

y=0
(xy)−3/2 exp

(
−α2

1

4x
− α2

2

4y

)

×
〈
exp(−x‖r − a‖2)

∣∣∣∣ 1

‖r − c‖
∣∣∣∣ exp(−y‖r − b‖2)

〉
r

dx dy. (6)

The last term in the above integrand, i.e., the integral over the electron coordinates r, can be
replaced following Boys approach [2 (equation (17))] which yields

I1,0,0
1,0,0 (α1, α2, a, b, c) = N1(α1)N2(α2)

α1α2

4π

∫ +∞

x=0

∫ +∞

y=0
(xy)−3/2 exp

(
−α2

1

4x
− α2

2

4y

)

× 2π

x + y
exp

(
− xy

x + y
‖a − b‖2

)
F0[(x + y)‖p − c‖2] dx dy (7)

in which the vector p is related to a and b by the following relationship [3 (p 154)]:

p = xa + yb
x + y

. (8)

The function F0(z) appearing in equation (7) is usually referred to as the Boys function and is
generally defined as

Fm(z) =
∫ 1

0
t2m exp(−zt2) dt. (9)

Here, it is worth reminding the reader that the evaluation of the function Fm(z) has received
particular attention in the context of multi-centre integrals over GTOs. In addition to
the obvious approach in which series representations and classical Gauss quadratures are
used, there has also been a procedure that used a special class of orthogonal polynomials
(Rys polynomials). The implementation of this approach was widely used in Hondo [12].
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Now, by introducing two new variables, u = x/(x + y) and z = x + y, one can re-write
equation (7) according to [7] as

I1,0,0
1,0,0 (α1, α2, a, b, c) = N1(α1)N2(α2)

α1α2

2

∫ 1

u=0
[u(1 − u)]−3/2

∫ +∞

z=0
z−3

× exp

[
−u(1 − u)‖a − b‖2z − 1

4

(
α2

1

u
+

α2
2

1 − u

)
1

z

]
F0[z‖p − c‖2] dz du

(10)

At this point it is worth noting that the p − c depends only on u since we have, p − c =
ua + (1 − u)b − c. Following the notation of [7] and define two parameters

a = ‖a − b‖ and p = ‖p − c‖. (11)

Furthermore, to bring equation (10) into the Shavitt and Karplus [7] form we perform a change
of variable w = p2z which yields after some simplifications

I1,0,0
1,0,0 (α1, α2, a, b, c) = N1(α1)N2(α2)

α1α2

2

∫ 1

u=0

1

[u(1 − u)]3/2
p4T5/2,0(σ, τ ) du (12)

in which the semi-infinite integral is generalized to have the following form:

Tl,m(σ, τ ) =
∫ +∞

0
wm−l−1/2F0(w) exp

(
−σw − τ

w

)
dz (13)

where the parameters σ and τ are such that

σ = u(1 − u)
a2

p2
and τ = p2

4

(
α2

1

u
+

α2
2

1 − u

)
. (14)

For the purpose of this work, the numerical algorithms and experiments will be illustrated using
arbitrary s-type orbitals because of their intrinsic simplicity and the ease of the corresponding
working formulae. Indeed a general formula for three-centre nuclear attraction integrals
involving high-order s-type orbitals can readily be derived by differentiating the un-normalized
form of equation (10) with respect to the screening parameters α1 and α2. However, in order to
make subsequent analytical work straightforward, it is highly desirable to start by representing
the un-normalized version of equation (10) as the first partial derivative with respect to α1 and
α2. Thus noticing that such a differentiation operation yields

U1,0,0
1,0,0 (α1, α2, a, b, c) = I1,0,0

1,0,0 (α1, α2, a, b, c)/[N1(α1)N2(α2)]

= 2
∫ 1

u=0
[u(1 − u)]−1/2

∫ +∞

z=0
z−1F0(z)

(
− ∂

∂α1

)

×
(

− ∂

∂α2

)
exp

(
−σz − τ

z

)
dz du (15)

it is clear that three-centre nuclear attraction integrals involving arbitrary s orbitals can easily
by obtained by means of the following:

In2,0,0
n1,0,0 (α1, α2, a, b, c)=Nn1(α1)Nn2(α2)

(
− ∂

∂α1

)n1
(
− ∂

∂α2

)n2

U1,0,0
1,0,0 (α1, α2, a, b, c). (16)

From equations (15) and (14) it is clear that the differentiation operator will only act on the
term involving τ which is exp(−τ/z). For instance, the n1th derivative with respect to α1 is
obtained from (

− ∂

∂α1

)n1

exp

(
− p2

4uz
α2

1

)
. (17)
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As pointed out in [7], the above differentiation should lead to a Hermite polynomial of
order n1 since the derivatives given above are closely related to Rodrigues representation
[13 (p 768)] of such polynomials,

Hn(z) = exp(z2)

(
− d

dz

)n

exp(−z2). (18)

As a consequence, three-centre nuclear attraction integrals involving arbitrary s STOs can
finally be obtained by combining equations (16), (15) and the Rodrigues representation of
Hermite polynomials (18). This yields

In2,0,0
n1,0,0 (α1, α2, a, b, c) = Nn1(α1)Nn2(α2)2

−(n1+n2−1)

∫ 1

u=0
u−(n1+1)/2(1 − u)−(n2+1)/2

×
∫ +∞

z=0
z−(n1+n2+2)/2Hn1

[
α1p

2
√

u

1√
z

]
Hn2

×
[

α1p

2
√

1 − u

1√
z

]
F0(z) exp

(
−σz − τ

z

)
dz du. (19)

For the computation that will take place in the next section, it is advisable to introduce a change
of variable x = 1/z allowing the semi-infinite integral occurring above to be transformed into
the following:

T (n1, n2, u, a, p) =
∫ +∞

0
x(n1+n2−2)/2Hn1

[
α1p

2

√
x√
u

]
Hn2

[
α2p

2

√
x√

1 − u

]
︸ ︷︷ ︸

Pn1+n2−1(x)

F0

(
1

x

)

× exp
(
−σ

x
− τx

)
dx. (20)

Using the fact that Hermite polynomials are defined as [11 (p 250)]

Hn(z) = n!
[n/2]∑
m=0

(−1)m(2z)n−2m

m!(n − 2m)!
(21)

it is clear that the product referred to as Pn1+n2−1(z) in equation (20) is indeed a polynomial of
degree n1 + n2 − 1 as can easily be seen from the following:

Pn1+n2−1(z) = z(n1+n2−2)/2Hn1(r
√

z)Hn2(s
√

z)

= n1!n2!
[n1/2]∑
m1=0

[n2/2]∑
m2=0

(−1)m1

m1!(n1 − 2m1)!

(−1)m2

m2!(n2 − 2m2)!

× (2r)n1−2m1(2s)n2−2m2zn1+n2−m1−m2−1 (22)

in which r = (α1p)/(2
√

u) and s = (α2p)/(2
√

1 − u). This fact is very important since
the following section relies on it to justify the usefulness of a special quadrature for the
computation of the semi-infinite integral (20). As a last note, it is worth mentioning that
equation (20) can be written as a finite sum involving integrals similar to that of given by (13)

T (n1, n2, u, a, p) = n1!n2!
[n1/2]∑

m1

[n2/2]∑
m2

(−1)m1

m1!(n1 − 2m1)!

(−1)m2

m2!(n2 − 2m2)!

×(2r)n1−2m1(2s)n2−2m2Tn1+n2+1/2,m1+m2(z). (23)
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4. Evaluation of the semi-infinite integral

As can be seen from equations (10) and (19), three-centre nuclear attraction integrals are
represented by a double integral the innermost of which is semi-infinite. For numerical
work Shavitt and Karplus computed the semi-infinite integrals Tl,m(σ, τ ) of (13) by means of
its series representation. Furthermore, to improve the computational efficiency, the authors
had recourse to the so-called Aitken 	2 convergence accelerator [14]. This indeed was a
brilliant idea and nowadays much more sophisticated techniques, such as Wynn’s epsilon
algorithm [15] or Levin u [16] transformation and its generalizations [17], can be applied to
the same infinite series to potentially get an even better convergence. More recently, Rico
et al [9] implemented a numerical procedure in which the semi-infinite integral Tl,m(σ, τ )

was evaluated as a series involving modified Bessel functions of the second kind kν(z) (also
known as McDonald functions). According to the authors, when proceeding in this way, the
leading numerical procedure is accurate and reasonably cost efficient. This work adds to the
arsenal of methods that could possibly be applied to evaluate Tl,m(σ, τ ). Indeed, because of
the severe efficiency constraints that are to be imposed on the numerical algorithms used to
compute multi-centre integrals over STOs, we would like to investigate the potential benefits
of a new approach which could possibly be considered as an alternative to the work of Shavitt
and Karplus and Rico et al. Of course, the objective of this work is mostly focused on the
accuracy of the results as opposed to the efficiency of the procedure which will be addressed
as more insight is gained through more experimentations. When considering the semi-infinite
integral T (n1, n2, u, a, p) of equation (20) it can be noted that its integrand is represented by
a product of three terms: a polynomial Pn1+n2−1(z) (by virtue of equation 22), a Boys function
F0(z) and an exponential term with a special argument. Luckily, in the case of three-centre
nuclear attraction integrals the term F0(z) reduces to

√
π/2) erf(

√
z)/

√
z. As a consequence,

the integrand of equation (19) can be represented as

Integrand =
√

π

2
Pn1+n2−1(z) erf

(
1√
z

)√
z exp

(
−σ

z
− τz

)
︸ ︷︷ ︸

W(σ,τ ;z)

(24)

in which erf(z) stands for the error function. In the above equation, the term referred to
as W(σ, τ ; z) is obviously a non-negative function ∀z ∈ IR+. As a consequence, the core
idea of this work is to set up a special Gauss quadrature for which W(σ, τ ; z) would be
considered as the weight function. In fact, the present investigation was motivated by two
major facts. (1) If the weight function W(σ, τ ; z) is omitted from the integrand (24), the rest
of the integrand is a smooth function that can be approximated by a low-order polynomial.
(2) For certain values of the parameters σ and τ , W(σ, τ ; z) presents a rather sharp peak
around its unique moving extremum located at z = [1/2 +

√
1/4 + 4στ ]/(2τ). This particular

feature of W(σ, τ ; z) makes it hard for classical Gauss quadratures to be reliable without
having recourse to splitting the integration range so to concentrate the quadrature nodes where
the integrand is most significant (figure 1).

According to [18 (section 1.10)], a given function W(z) is an admissible weight if the
following conditions are satisfied:

C1: W(z) � 0 ∀z ∈ [0,∞)

C2:
∫ +∞

0
W(z) dz > 0

C3: ∀n ∈ N

∫ +∞

0
znW(z) dz < ∞.
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Figure 1. Plot of the weight function W(σ, τ ; z) as defined by equation (24) for selected values of
σ and τ .

In the context of this work, W(σ, τ ; z) is an admissible weight function since it clearly satisfies
the conditions enumerated above. The moments defined by condition C3 and needed to set up
the Gauss–Bessel quadrature in the next section, can be expressed analytically according to
[11 (p 85)]∫ +∞

0
zn

[
z1/2 exp

(
−σ

z
− τz

)]
︸ ︷︷ ︸

W(σ,τ ;z)

dz = 2

√(σ

τ

)n+3/2
kn+3/2(2

√
στ) with

{�(σ ) > 0
�(τ ) > 0

(25)

where kn+1/2(z) is the modified Bessel function of the second kind which because of its half
integral order can be represented by a closed formula [19 (p 80)] as

kn+1/2(z) =
√

π

2z
exp(−z)

n∑
p=0

(n + p)!

p!(n − p)!(2z)p
. (26)

In practice, the parameters τ and σ are both strictly positive since the outermost integral in (12)
is generally computed using Gauss quadratures which do not necessarily use the boundary.

4.1. Setup of the Gauss–Bessel quadrature

Generally for a given admissible weight function satisfying the conditions enumerated above,
the algorithm used to construct the corresponding Gauss quadrature proceeds in three steps.
Although specialized books in numerical analysis define such a procedure based on rigorous
mathematical foundations [20 (pp 105–12), [18] (pp 95–120)], in practice we found that [21
(pp 148–50)] provides a more computationally oriented description:

1. Build a family of polynomial orthogonal with respect to the inner product,
〈f (z)|W(σ, τ ; z)|g(z)〉. Clearly, the integration is to performed over the range of interest
which in the present case would be [0, +∞).
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2. Compute the roots of the newly created polynomials. To help speed up the process one
may take advantage of the interlacing property of the roots of consecutive polynomials
[21 (p 149)].

3. Compute the weights of the quadrature using the relationship

wj = 〈pn−1|pn−1〉
pn−1(xj )p′

n(xj )
(27)

in which p′
n(xj ) is the derivative of the orthogonal polynomial at its zero xj .

Perhaps the most intuitive procedure to use for building the orthogonal polynomials
required by the mechanical quadrature to be used in this work is to proceed using the Gram–
Schmidt orthogonalization method. The algorithm to be used relies on two theorems which
according to [18 (pp 30, 31)] state the following:

Theorem 4.1. If p0(x), p1(x), . . ., are polynomials with

pn(x) = knx
n + · · · with kn > 0 (28)

orthogonal with respect to the inner product (f, g) then we have the recurrence

pn+1(x) = γnxpn(x) −
n∑

s=0

an,sps(x) with n = 0, 1, 2, . . . (29)

where

p0(x) ≡ k0, γn = kn+1

kn

and an,s = γn

(xpn, ps)

(ps, ps)
s = 0, 1, . . . , n. (30)

Theorem 4.2. If the inner product satisfies the further condition that (xf, g) = (f, xg), then
the recurrence relation (30) reduces to the three term recurrence

pn+1(x) = (γnx − αn)pn(x) − βnpn−1(x) n = 0, 1, . . . (31)

where we write p−1(x) = 0, and where

αn = γn

(xpn, pn)

(pn, pn)
, n = 0, 1, . . .

βn = γn

(xpn, pn−1)

(pn−1, pn−1)
= γn

γn−1

(pn, pn)

(pn−1, pn−1)
, n = 1, 2, . . . . (32)

Using the above theorems we can derive using the Gram–Schmidt orthogonalization procedure
a family of polynomials orthogonal with respect to the weight function given in (24). To initiate
the algorithm p0(x) and p1(x) are computed as

p0(x) = 1 and p1(x) =
[
x − (xp0, p0)

(p0, p0)

]
p0(x). (33)

Although the leading coefficients in p0(x) and p1(x) can be chosen rather arbitrarily, a
legitimate and sensible choice would be (using the notation of theorem 4.1) k0 = 1 and
k1 = 1. As a consequence of this, using equations (30) and (32) we can compute recursively
p2(x), p3(x), . . . . This yields high-order polynomials in which the leading coefficient is such
that, kn = 1,

pn+1(x) =
[
x − (xpn, pn)

(pn, pn)

]
pn(x) − (pn, pn)

(pn−1, pn−1)
pn−1(x). (34)
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Table 1. First few polynomials orthoginal with respect to the inner product 〈f |W(1, 1; z)|g〉[0,+∞).

p1(z) p2(z) p3(z) p4(z) p5(z)

x0 −3/2 38/8 −865/61 1423 437/21 236 −43 806 791 147/112 925 752
x1 1 −19/4 5967/244 −6214 591/42 472 228 819 254 915/225 851 504
x2 1 −603/61 1820 901/21 236 −10 850 130 815/14 115 719
x3 1 −179 991/10 618 6305 606 105/28 231 438
x4 1 −366 590 090/14 115 719
x5 1

To illustrate the above procedure, a selection of polynomials orthogonal with the respect to
the weight function W(1, 1; x) (cf equation (24)) is listed in table 1. Now that we have the
orthogonal polynomials constructed, the next step would be to determine the roots of such
polynomials. This can easily be done by means of a specialized routine available from many
mathematical libraries. For this work the roots of the selected polynomial were determined
using an adapted version of a routine from [21] which is based on the Newton–Raphson
algorithm. As a final step, the weights were computed using equation (27).

5. Numerical experiments

In the following, results for three-centre nuclear attractions are reported and comparisons with
the literature are made from an accuracy point of view. Of course, because of the limitation
imposed in the beginning of this work the results presented below involve only s orbitals.
Two different molecular systems were considered: the HCN molecule representing the linear
case and H2O as an example of nonlinear systems. In addition to these, we also generated
some values for a C3 system, C3 for which particular convergence problems arouse in the
framework of the one-centre expansion method [22]. For the numerical experiments listed
below, the integral over u in equation (19) was calculated using a Gauss–Legendre quadrature of
order 32. However, before presenting results for three-centre nuclear attraction integrals, it
is of importance to assess the stability of the Gauss–Bessel quadrature as a function of the
number nodes used in the computation of the semi-infinite integral occurring in (19). For
such a purpose, we compared values of T5/2,0(σ, τ ) as obtained by Gauss–Bessel quadrature
against those obtained with its series representation. One such series was given by Shavitt and
Karplus [7]

Tl,m(σ, τ ) =
∑

i=m−l

[(l + i + 3/2)]−1
( τ

σ + 1

)i+1/2
ki+1/2(2

√
(σ + 1)τ ). (35)

After comparing numerous values, mainly as the integrals listed in table 2 were computed
a rough estimate was made for the order of the Gauss–Bessel quadrature that achieves the
required accuracy for practical purposes. It was indeed found that using a quadrature of
order 12 usually yields values for the semi-infinite integral in good agreement with those
obtained by the series representation. In light of these findings it seemed reasonable to use a
Gauss–Bessel of order 12 as part of the algorithm used to compute the selection of three-centre
nuclear attraction integrals listed below. In fact, as far as accuracy is concerned, the values
reported in tables 2 and 3 show a good agreement with alternative approaches, e.g., FIT using
Gauss-Mobius quadrature [23], FIT combined with D̄-like transformations [24–27], single
centre expansion approach combined with nonlinear sequence transformation [22].
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Table 2. Selected three-centre nuclear attraction integrals occurring in HCNa. The semi-infinite
integral of (19) is computed by means of a Gauss–Bessel of order 12.

Integral This work Reference [22] ALCHEMY [28] DTESTb [23]

〈1s(1.25, H)|1s(5.67, C)〉 2.945 496 055(−2) 2.945 496 054(−2) 2.945 496 054(−2) 2.945 494 454(−2)
〈1s(1.25, H)|2s(1.61, C)〉 1.606 646 064(−1) 1.606 646 078(−1) 1.606 646 041(−1) 1.606 645 937(−1)
〈1s(5.67, H)|1s(6.66, N)〉 3.710 041 454(−5) 3.710 041 454(−5) 3.710 041 454(−5) 3.710 152 495(−5)
〈1s(5.67, H)|2s(1.94, N)〉 2.695 528 880(−2) 2.695 528 880(−2) 2.695 528 880(−2) 2.695 532 230(−2)
〈2s(1.61, H)|1s(6.66, N)〉 1.408 177 371(−2) 1.408 177 370(−2) 1.408 177 370(−2) 1.408 441 969(−2)
〈2s(1.61, H)|2s(1.94, N)〉 1.467 233 410(−1) 1.467 233 406(−2) 1.467 233 406(−1) 1.467 232 649(−1)

a The HCN molecule is along the Z-axis and such that d(H, C) = 2.0143 and d(C, N) = 4.1934.
b Values obtained with DTEST program in which the control parameters were such that LRM 90|30, 20;
1(−6)|20, 16; 1(−7)|10, 10; 1(−8).

Table 3. Selected three-centre nuclear attraction integrals from nonlinear systems. The semi-
infinite integral of (19) is computed by means of a Gauss–Bessel quadrature of order 12.

Integral This worka This workb FIT with SD̄c

〈1s(7.67, O)|1s(1.21, H1)〉d 3.067 873 120(−2) 3.067 870 402(−2) 3.067 870 402(−2)
〈2s(2.09, O)|1s(1.21, H1)〉d 2.313 538 707(−1) 2.313 538 707(−1) 2.313 538 730(−1)
〈1s(7.67, O)|1s(1.25, O1)〉d 3.000 060 106(−3) 3.000 060 106(−2) 3.000 060 106(−2)
〈2s(2.09, O)|1s(1.25, O1)〉d 2.269 676 910(−1) 2.269 676 910(−1) 2.269 676 902(−1)

Integral This worka Reference [22] DTEST

〈1s(5.67, C1)|1s(5.57, C2)〉e 2.320 323 542(−5) 2.320 346 760(−5) 2.320 320 390(−5)
〈2s(1.61, C1)|1s(5.57, C2)〉e 2.036 354 376(−2) 2.036 349 670(−2) 2.036 346 710(−2)
〈2s(1.61, C1)|2s(1.61, C2)〉e 1.949 350 808(−1) 1.949 350 000(−1) 1.949 349280(−1)

a,b Numerical evaluation were performed using a 32 and 96 Gauss–Legendre for the outermost integral in
equation (19).
b Values obtained with DTEST program in which the control parameters were such that LRM 90|30, 20;
1(−6)|20, 16; 1(−7)|10, 10; 1(−8).
c Based on the method developed in [26, 27].
d Selected three-centre nuclear attraction integrals from H2O defined in spherical coordinates (r, θ, φ) as O(0, 0, 0),
H1(1.81, 52.5◦, 0.0◦), H2(1.81, 52.5◦, 180.0◦).
e Selected three-centre nuclear attraction integrals from C3 defined in Cartesian coordinates as C1(0, 0, 0), C2(0, 0,

2.519) and C3(2.18152, 0, 1.25950), cf [22].

6. Conclusion

In this work, we presented a new approach to be used for the computation of the semi-infinite
integrals occurring in the algorithms based on the Gaussian integral transform of Shavitt and
Karplus. The main objective of the current investigation was mainly to bring a proof of concept
showing that a special Gauss quadrature having W(σ, τ ; z) = √

z exp(σz − τ/z) as a weight
function can lead to an accurate numerical procedure with which multi-centre integrals over
STOs can be evaluated. However, at present it must be pointed out that it is premature
to claim that the present approach can be used within an operational setting for routine
computation of multi-centre integrals over STOs. The present method has nonetheless shown
some potential making it worth further investigation which should enable us gain more insight
into its numerical advantages and limitations especially from an efficiency point of view.
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